Expanding spectrum of scn1a-related phenotype with novel mutations
نویسندگان
چکیده
منابع مشابه
Cryptogenic epileptic syndromes related to SCN1A: twelve novel mutations identified.
BACKGROUND Sodium channel alpha 1 subunit gene, SCN1A, is the gene encoding the neuronal voltage-gated sodium channel alpha 1 subunit (Na(v)1.1) and is mutated in different forms of epilepsy. Mutations in this gene were observed in more than 70% of patients with severe myoclonic epilepsy of infancy (SMEI) and were also found in different types of infantile epileptic encephalopathy. OBJECTIVE ...
متن کاملCRB1-Related Leber Congenital Amaurosis: Reporting Novel Pathogenic Variants and a Brief Review on Mutations Spectrum
Background: Leber congenital amaurosis (LCA) is a rare inherited retinal disease causing severe visual impairment in infancy. It has been reported that 9-15% of LCA cases have mutations in CRB1 gene. The complex of CRB1 protein with other associated proteins affects the determination of cell polarity, orientation, and morphogenesis of photoreceptors. Here, we report three novel pathogenic varia...
متن کاملExpanding the phenotype of GMPPB mutations.
Dystroglycanopathies are a heterogeneous group of diseases with a broad phenotypic spectrum ranging from severe disorders with congenital muscle weakness, eye and brain structural abnormalities and intellectual delay to adult-onset limb-girdle muscular dystrophies without mental retardation. Most frequently the disease onset is congenital or during childhood. The exception is FKRP mutations, in...
متن کاملThe spectrum of SCN1A-related infantile epileptic encephalopathies.
The relationship between severe myoclonic epilepsy of infancy (SMEI or Dravet syndrome) and the related syndrome SMEI-borderland (SMEB) with mutations in the sodium channel alpha 1 subunit gene SCN1A is well established. To explore the phenotypic variability associated with SCN1A mutations, 188 patients with a range of epileptic encephalopathies were examined for SCN1A sequence variations by de...
متن کاملMutations in PIGY: expanding the phenotype of inherited glycosylphosphatidylinositol deficiencies
Glycosylphosphatidylinositol (GPI)-anchored proteins are ubiquitously expressed in the human body and are important for various functions at the cell surface. Mutations in many GPI biosynthesis genes have been described to date in patients with multi-system disease and together these constitute a subtype of congenital disorders of glycosylation. We used whole exome sequencing in two families to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Turkish Journal of Pediatrics
سال: 2017
ISSN: 0041-4301
DOI: 10.24953/turkjped.2017.05.010